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Abstract - Defining parasequences manually would take a huge amount of time. Interpretation subjectivity has 
also become an issue among stratigrapher when they are dealing with parasequence boundary identification 
which may resulting in inconsistency of parasequence identification. This paper means to present the use of 
automation in parasequence boundary identification using simple linear regression method in synthetic data, 
well log data, as well as outcrop image data. 

 
In stratigraphy, vertical succession of lithology holds a very important meaning. Vertical succession of lithology 
in paralic setting where deposition occurred in a certain sea level might shows coarsening upward vertical 
succession. In the event where flooding occurred and sea level abruptly rise, the coarsening vertical succession 
might be disturbed by sharp change of lithology into finer particle, or simply called vertical discontinuity. 
Stratigaphers may use vertical discontinuity to identify the presence of flooding surfaces or parasequence 
boundaries. 

 
Linear regression can be used to identify vertical discontinuity by measuring error occurred due to linear 
regression prediction. Vertical succession that showing deposition continuity might  show small error number in 
the data where vertical disturbance occurred. The error value might increase significantly. Thus, it would be 
possible to determine flooding surface using linear regression by applying some threshold. This method has 
been proven to work using both well log data and outcrop image data which might ease stratigraphy analysis 
workflow in general. 
 
Key words:  Parasequence, automation, quantitative sedimentology, quantitative stratigraphy, sequence 
stratigraphy, computation. 
 

1. INTRODUCTION 
A parasequence set is a set of genetically 
related parasequences that form a unique 
stacking pattern bounded by a major 
marine flooding surface and their 
contrasting surfaces in most cases (van 
Wagoner et al., 1988). Defining 
parasequence boundary is the very first 
steps that geologist must do in order to 
conduct sequence stratigraphy correlation. 
In regressive paralic settings such as 
deltaic or beach deposit, a parasequence 
commonly shows shallowing-upward 
vertical succession and, in many cases 
showing coarsening-upward succession.  
Parasequence boundary may occur when 
sea-level rise, which may cause the 
depositional condition to change. As the 

sea level rise, depositional conditions 
become relatively deeper thus finer-
grained sediment may be deposited in the 
basin. Parasequence boundary, known as 
flooding surface (FS), may be identified by 
abrupt change in vertical succession from 
shallower deposition into deeper 
depositional setting. In lithology point of 
view, flooding surface may be identified 
by abrupt change lithology from coarse 
grained sediment into finer grained 
sediment. 
 
Not all FS are characterized by sharp 
lithology change from coarse to fine-
grained sediment. Deltaic deposits that 
have strong fluvial influence may show the 
combination of coarsening-upward and 
fining-upward succession on the top of 
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parasequence. Coarsening-upward 
succession signifies the deposition of 
prodelta – delta front – delta plain facies, 
while fining upward succession signifies 
the deposition of fluvial channel facies 
(Septama et al., 2018). Regardless the 
condition, this experiment is meant to test 
the algorithm that being developed in the 
condition here parasequence  where 
coarsening upward characteristic, and 
combination between coarsening upward 
and fining upward succession are presents. 
Nevertheless, parasequence in carbonate 
deposition systems are even more difficult 
to interpret, especially using mere well log 
data. Almost every depositional element 
possesses the same mineralogical 
composition (Wilson, 1975; Wilson & 
Wilson, 1975) with small contrast in well 
log respond . Therefore, it is almost 
impossible to identify flooding surfaces 
without helps from core or at least image 
logs.  
 
Geologist in oil and gas company may 
spend substantial amount of time to 
interpret flooding surface in geological 
data, especially in the oil field that possess 
high-frequency deltaic deposits and 
thousands of well log data. Inconsistency 
may become another issue when geologists 
deal with geological interpretation. An 
experienced geologist may change their 
interpretation concept midway when they 
are doing interpretation which 
interpretation results at the beginning of 
the project and at the end of the project 
may be different. Inconsistency may 
become much more complex when two or 
more geologists are working on the same 
dataset, as it is known that geologists may 
have different experiences and concepts, 
resulting in differences in their 
interpretations. 
 
In order to tackle the interpretation time 
duration and inconsistency problem, a 
quantitative solution is required. This 
paper will present the possibility of using a 
simple linear regression model to predict 

flooding surface presence for synthetic 
data, well-log data, as well as outcrop 
images. This method may reduce 
interpretation duration as well as provide 
more consistent results. 

REVIEW ON QUANTITATIVE 
STUDIES IN STRATIGRAPHIC 
SURFACES 
Quantitative study in stratigraphy has been 
discussed by many authors. Many of the 
studies are highlighting the pattern change 
in stratigraphy that responsible to system 
tract change, or sequence stratigraphic 
surface. Unlike parasequence, system tract 
composed of one or more parasequence 
that showing sea level change in certain 
direction which might be sea level drop or 
sea level rise.  
 
System tract that occurred during sea level 
rise is called Transgressive System Tract 
(TST), and system tract that occurred 
during sea level drop and still sea level is 
called Regressive System Tract (RST). 
The boundary between TST and RST is 
called Maximum Flooding Surface (MFS), 
and the boundary between RST and TST is 
called Sequence Boundary (SB) or 
Maximum Regressive Surface (MRS). 
Many system tract type that has been 
popularized by authors (O. Catuneanu et 
al., 2009; Octavian Catuneanu, 2006, 
2017; Miall, 1996), each of the type 
possess their own characteristic. MFS, SB, 
and MRS may be identified easily as they 
exhibits unique lithological features. 
 
The following lists are methods that gives 
significant impact in quantifying 
stratigraphic surface in sequence 
stratigraphy domain: 

1. Markov Chain in defining cyclicity 
in stratigraphic succession. This 
paper discuss on how markov chain 
can be used to identify cyclicity in 
vertical succession. The data that 
being used in this publication is 
discrete lithological succession for 
measuring section in an outctop. 
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This paper has been referred by 
many authors that uses similar 
technique to cyclicity (might be as 
sequence boundary, or flooding 
surface), some of them are Mastej, 
2002; MIALL, 1973; 
Schwarzacher, 1969; Sinha S et al., 
2015 . 

2. Signal processing method in 
defining sequence stratigraphic 
boundary. This paper uses signal 
processing method, like spectral 
analysis, Continuous Wavelet 
Transform (CWT) from continuous 
vertical succession data (i.e. 
Gamma Ray well log data). The 
outcome of this methods is mainly 
a trend log that shows depositional 
tendency (transgressive and 
regressive), that can be very useful 
in defining MFS and MRS (and 
SB). The derivative of this methods 
has been discussed in detail in Li & 
Guo, 2013; Nio et al., 2005; Ye et 
al., 2017.  

3. Machine Learning for lithological 
prediction and Stratigraphy 
Analysis. The use of machine 
learning (and deep learning) 
require pre-interpreted dataset for 
the machine to learn and imitate the 
interpretation process as provided 
on pre-interpreted dataset. Machine 
learning in geology are mainly 
used for lithological prediction 
using well log data as demonstrated 
by Hall, 2016; Kusumah et al., 
2019; Pratama et al., 2020,. Using 
more sophisticated machine 
learning method, some authors 
shows the possibility on using 
machine learning approach for 
Stratigraphic surface identification 
Gerald, 2020; Gosses, 2020.  
 

Linear regression to identify MFS or MRS 
in a lithological vertical succession has 
been briefly discussed by Nio et al., 2005. 
The method however lack of description 

on FS identification prior to MFS and 
MRS identification. In contrast with Nio et 
al., 2005, this paper meant to highlight the 
possibility of using linear regression for 
FS identification rather than MFS and 
MRS in lithological vertical succession. 
 

2. DATA AND METHODOLOGY 
 
PRINCIPLE OF FLOODING 
SURFACE IDENTIFICATION WITH 
LINEAR REGRESSION, AND ITS 
APPLICATION TO SYNTHETIC 
DATASET 
This research utilizes vertical succession 
(or sediment profile) that provided form 
synthetic data, well log, and outcrop 
image. Those data are converted into 
stratigraphic vertical succession data. 
Vertical succession holds two important 
information, they are vertical index (V) 
and grain size index (Gs) (Figure 1). 
Vertical index is value that represent 
vertical location, the value should be in 
integer or decimal data format, and Grain 
size is number that represent the size of 
grain with the value that ranging from 0 to 
1 in decimal format, where 0 represent 
coarse grained sediment, and 1 represent 
fine grained sediment. Linear regression 
model and prediction conducted by using 
V and Gs in a windowed section (Figure 
1).  
 
Asuming that Gs = m*Vi + C, thus to get 
m and c value, linear regression modelling 
is required: 
 
 
 
 
 
 
 
 
 

 

f(V(i-i+n), Gs(i-i+n))  = (m, C) 
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where: 
f(V(i-i+n), Gs(i-i+n))  = linear regression model 
V(i-i+n)   = Vertical index in windowed section 
Gs(i-i+n)   = Grain size index in windowed section 
i   = windows number index 
n   = sliding window size 
m   = linear regression coefficient 
C   = linear regression intercept 

 
Linear regression model are used to predict 
Gsx, which are grain size value in 
V(i+n+1), and err (error) are calculated by 
calculating the differences between 

predicted value (Gsx) with real value in 
the same vertical location index 
(Gs(i+n+1)) 
 

 
Gsx  = m * V(i+n+1) + C 
err   = Gsx – Gs(i+n+1) 
 
where: 
Gsx  = Predicted Gs value using linear regression in V(i+n+1)  
err   = Difference between predicted Gs and GSx 

 
 
The data that show good linearity may have 
err value close to 0, any err value that 
deviates far from 0 may indicate nonlinear 
V and Gs relationship (Figure 1). Positive 
err value indicate abrupt Gs change from 
coarser sediment to finer sediment, while 
negative err value indicate abrupt Gs change 
from finer sediment to coarser sediment. 
Flooding surface (FS) signified by presence 
of abrupt change in lithology (Grain size 
(Gs)) that signified by large negative value 
of err. 
 
In order to extract FS from err value, a 
cutoff must be applied. Apart from linearity 
of windowed data, err value will vary with 
other factors, such as window size and 
inherited noises that present on the data. To 
better understand on how window size 
affect, err value, an experiment has been 
conducted by calculating err on many 
window size and assess how much err value 
changes Figure 2. 
 
Figure 2 show synthetic data set that consist 
of 700-point data that consist of Gs and V. 

On second column showing err value with 
window size of 65, and third column is err 
value map on different window size over the 
data from window size 5 to 95. The color in 
third column represent err magnitude, where 
yellow represent high positive value and 
dark blue represent low negative value. As 
can be seen it the picture, larger window set 
yield wider err contrast. The fourth column 
is err value map with -0.15 cutoff.  
 
According to this experiment, it can be 
concluded that small window size only gives 
small err number and did not capture 
possible FS. Larger window on the other 
hand, may give contrast in err value which 
can be used to determine FS on vertical 
succession data with -0.15 cutoff. Caution 
must be risen on determining cutoff. Cutoff 
value may be different from one dataset to 
another dataset due to difference in inherited 
noise, average parasequence thickness and 
data range. One solution to this issue is by 
conducting trial and error experiment on 
defining cutoff using err map. 
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Figure 1 (left, middle) Linear regression modelling and prediction on different window 
location. The window on the left picture shows small prediction error due to good 
data linearity, while picture in the middle shows huge error that occurred due to 
bad data linearity. (Right) Every single error (err) calculated in different window 
will be recorded. 

 
Figure 2 (1st col) Synthetic lithological data, where 0 represent sandy lithology and 1 

represent shally lithology. (2nd col) Err calculation on synthetic dataset with -0.15 
cutoff. (3rd col) The experiment result on applying different window size on the 
same dataset, it can be seen that magnitude of error and width of error changes 
over the windows size change. (4th column) Same as figure in 3rd col with -0.15 
cutoff applied. 
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After cutoff has been applied, some 
interval data that identified as possible FS 
has been provided. In order to convert 
interval into actual Vertical Index, 1D data 
clustering and Min bagging method is 
required. 1D data clustering is a method to 
segregate serial data that only have one 
dimension into different groups. Data that 
possess relatively similar value will be 
grouped into a same group and there are 
minimal requirements number on how 
much data required to create a group. 
Should the data be below minimum 
required number, then possible FS will not 
be considered in any group and will be 
erased. Min bagging in method to find 
smallest vertical index in a same FS group. 
Figure 3 illustrate how  1D data clustering 

work, and Min bagging for every single 
cluster.  

 
Figure 4 shows FS prediction with linear 
regression result from synthetic dataset 
that has been clustered and Min bagging 
method has been applied on the data, as 
can be seen in the result that presented on 
fourth columns fits really wells with FS 
predicted by geologist. 
 
 
 
 
 
 

 
 

 

Figure 3 An illustration on how clustering and min bagging work. 
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Figure 4 FS prediction result on synthetic dataset. This figure also illustrate how possible FS 
interval being clustered and after min bagging as been applied.  

 

Figure 5 is summary of FS identification 
workflow using linear regression model 
for different type of data. The key different 
between these different data are the origin. 

Image data can also be treated as 1D data 
by extracting pixel value vertically, then 
continue the workflow as if it is a 1D data.

 

Figure 5 General workflow on how FS identification work. 
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3. RESULTS 
 
IMPLEMENTATION ON WELL LOG 
DATA SET: B-01 KUTAI BASIN 
Badak field is a giant gas producing field 
in Indonesia that located in Kutai basin, 
East Kalimantan. This field discovered in 
1972 and still producing gas until this 
paper written. The structure of Badak field 
characterized by four-way dip closure that 
span 75km along the anticline line that 
probably formed in Pliocene time 
(Huffington, 1990).  
 
Stratigraphically, Badak Field consist of 
prograding deltaic succession that 
dominated with fluvio-deltaic depositional 
environment. The deposition starts in 
Middle Miocene with prodelta setting with 
gradual change into more proximal facies, 
with some fluvial incision on the upper 
part of stratigraphy unit. Sand/shale ratio 
changes following the change of 
depositional setting, in general the 
sand/shale ratio showing thickening 
upward succession. 
 
Figure 7 show typical well Gamma Ray 
log respond that present in B-01 well with 
its associated facies. This figure shows 
variability of parasequence type presents 
in B-01 well, there are some parasequence 
that shows coarsening upward succession 
at the bottom that followed by coarsening 
upward succession on top of it. This type 
of parasequence signify proximal deltaic 
deposition, allowing deposition of channel 
(fluvial or distributary channel). 
 

Majority part of the well shows distinctive 
flooding surfaces that can be identified by 
abrupt lithology change from coarse 
lithology into finer lithology. This well 
present very good example of 
parasequence definition on well log data. 
Figure 8 and Figure 9 shows the highlight 
of B-1 well Gamma ray log respond, it can 
be observed that the vertical succession 
possess many FS. Presently, hundreds of 
well has been drilled in this Badak Field, 
which obviously needs significant time in 
order to identify FS with manual 
interpretation.  
 
Gamma ray log in B-01 consist of 21201 
points data reading with data spacing of 
0.5 ft, Figure 6 show statistical property of 
Gamma ray log data. Since the data is 
stretching more than 1, gamma ray log 
value normalization is required in order to 
squeeze the data range to fit 0 to 1 value to 
fit Gs criterion. Normalization applying 
these following equation: 

Gs = (GR – P5) / (P95 – P5) 
 
Once normalization has been 
implemented, FS can be identified by 
following workflow as has been described 
above.  
 
Figure 8 and Figure 9 shows the result of 
FS identification with using developed 
algorithm at depth of 2000 – 2500 ft and 
6000-6500 ft respectively. It can be seen 
there are some inaccuracy on FS prediction 
that occurred due to value contrast over a 
small distance. Other than that, majority of 
FS prediction are quite good. 
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Figure 6 Histogram of B-01 Gamma Ray (left) before normalization. (right) after 

normalization. 
 

 

 

 

Figure 7 Characteristic as well as simplified depositional facies labeling using Gamma Ray 
log data in B-01 well. 
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Figure 8 FS identification result on B-01 well interval 2000 – 2500 mMd 
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Figure 9 FS identification result on B-01 well interval 6000 – 6500 mMd. 
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4. DISCUSSION 
 
IMPLEMENTATION ON OUTCROP 
IMAGE 
The workflow developed for FS 
identification in 1D data (synthetic and 
well log) may also be implemented in 
Outcrop Image. The key difference 
between 1D data compared to image data 
is that image data is composed of series of 
1D data.  
 
The image that being used in this 
experiment shows variation of lithology. 
Lithology can be easily identified through 
visual observation in the picture, the color 
in the picture usually represent lithology. 
In general understanding, brighter color 
may represent coarser grained sediment, 
and darker color may represent finer 
grained sediment. In data perspective, 
color will be represented by number in 
digital format, and thus it will be possible 
to extract the Vertical index (V) and Grain 
Size (Gs) from an image. 
 
Digital image format store colors 
information in 16bit data format with 
minimum value of 0 and maximum value 
of 255 in four different color channel 
(RGBA). Although 4 channels are 
available, only three channels that will be 
used for this experiment (Red channel, 
Green channel, and Blue channel). Data 
squeezing is required for the algorithm to 
work.  
 
 
 
 

 
Figure 10 statistical property of image that 
being used in this research after data 
squeezing. 
Once data squeezing has been applied, FS 
identification workflow will be conducted 
using column by column basis (one 
column equals to one vertical succession 
extracted from the image). The amount of 
time may be different from one to another 
image,  bigger image require a longer time 
to do the workflow compare to smaller 
one. 
 
 
Figure 11 shows the result of FS 
identification using the proposed workflow 
with cutoff of -0.15 and linear regression 
window size of 40. Figure 12 shows FS 
identification on single extracted Gs from 
image column number 200. Using one 
vertical succession, some obvious FS has 
been identified with good confident. 
Figure 12 shows FS identification using 
all columns extracted from the image that 
marked by cyan colored cross markers. 
This experiment resulting in some markers 
that shows lateral continuity that shows 
presence of FS, and some scattered marker 
that occurred due to false FS prediction. 
Key factors that presumably affect the 
result are presence of shadow on the image 
and presence of object that are not 
geological object on the image. This 
experiment shows more manual works 
need to be done in order to refine FS 
identification on image basis. Work on 
balancing the shadow and masking non 
geological object are subjects for further 
research.   
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Figure 10 Statistical property of Image data after data squeezing 
 

 

Figure 11 FS identification on single extracted Gs from image column number 200. 
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Figure 12 (Left) The original image. (Middle) FS identification using 4 extracted Gs on image data, where cyan represent FS identified with the 

workflow. (Right) Identified FS using all extracted Gs on image data. 
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5. CONCLUSION  
According to the example provided in the 
discussion above, this method may provide 
geologist a quantitative solution on FS 
identification using well log and image 
data. This quantitative approach may 
reduce ambiguous interpretation due to 
geologist subjectivity as well as  reduce 
interpretation time in identifying FS. 
 
As shown on the experiment, the cutoff 
might be different from one data to another 
data. In order to standardize the cutoff, 
implementation using multi well basis 
works on window size and cutoff 
sensitivity is required. And on top of that, 
good database system to store well log 
data is also required in order to reduce 
performance lag occurred due to data 
query execution time. 
 
FS prediction using image data on the 
other hand, may providing some good FS 
identification that marked by laterally 
continuous marker. This experiment also 
resulting in ambiguous result FS marker 
that occurred due to presence of shadow 
and non-geological object. Manual work 
especially in shadow balancing, and non-
geological masking is required in order to 
improve this method. 
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